
P89V51RD2 and In-Application Programming (IAP)
Jan Waclawek, wek@efton.sk

Introduction
The P89V51RD21 is an 8051/8052-pin-compatible microcontroller by NXP (ex-Philips), with 64+8kB
FLASH code memory, 768B internal RAM (ERAM/XRAM), 6-clock (x2) mode, and a couple of extended
peripherals, such as the PCA unit, SPI interface and watchdog counter. The most remarkable feature is,
however, that it's FLASH can be in-situ programmed (ISP) through UART; and also its self-
programmability (in-application programmability, IAP).

The P89V51RD2 is a successor to the successful P89C51RD+2/P89C51RD23 line, which introduced the
ISP/IAP paradigm to the higher-end FLASH-based 8-bit microcontrollers. Microcontrollers with very
similar features - 8051-pin-compatible, with up to 64kB of FLASH, supporting IAP and ISP - are
manufactured by multiple manufacturers, including NXP's own P89C66x/P89V66x4, Atmel
AT89C51RD2/AT89C51ED25 (successor to the Temic T89C51RD2), Nuvoton (ex-Winbond) W78ERD2A6

and SST SST89E564RD/SST89E516RD7. Some of them offer also a mix of models with less FLASH (and
Atmel also a model with 128kB FLASH, the AT89C51RE2) and 3V supply voltage. However, although they
are remarkably similar, they usually significantly differ in the IAP/ISP method. Some even don't have
factory-installed bootloader, even if they usually offer free bootloader firmware and associated PC
software.

As Philips/NXP phased out the P89C51RD2 in favour of P89V51RD2, users started to complain about the
rather different nature of the IAP procedure in the latter. This made NXP to introduce the P89CV51RD28

and family, which, although physically closer to the newer P89V51RD2, mimics closer the original IAP
behaviour of the older P89C51RD2.

Family members
There are also modifications to P89V51RD2 offered by NXP, besides the three packaging options
(traditional DIP40 and PLCC44, and the miniscule TQFP44 with 0.8mm pin pitch).

Devices with less FLASH are marked as P89V51RB2 for 16kB FLASH and P89V51RC2 for 32kB FLASH.

Low supply voltage (3V) devices are marked as "LV", such as in P89LV51RD29. Unfortunately, NXP
currently does not offer wide supply voltage devices in this family.

As most of the characteristics are the same across the whole family, often, "cumulative" marking such as
"P89V51Rx2" is used to denote any member of the family. However, throughout this document,
"P89V51RD2" will be used consistently, marking also other members of the family as appropriate.

There were several versions of the P89V51RD2 datasheet issued by Philips/NXP. To avoid confusion, it is
always a good idea to download the latest one. At the time of writing of this document, the latest
datasheet is marked as "Rev.4 - 1. May 2007"10.

P89V51RD2 and ISP
One of the key moments of success of the P89V51RD2's predecessors was the ability to program them
in-situ through UART. This alleviated the need for a costly parallel device programmer, or even a
specialised programming "cable"; which made these microcontrollers attractive for small enterprises and
hobbyists, despite their higher price. It also allows easy field-update of firmware from any PC or other
device equipped with standard serial port.

The P89V51RD2 continued in this trend, although with a slightly different communication protocol, and,
more importantly, a different bootloader entry method. On the older models, bootloader was entered
when a particular set of voltage levels was applied to various pins (including the PSEN/ pin).

On P89V51RD2, after reset, the bootloader waits for a predetermined time, until a "U" character (55h)
arrives to the UART receiver. The datasheet states this time as "approximately 400ms", however, as it is
in fact derived from the watchdog, this time is dependent on the system clock frequency, being around
400ms when fCLK is approx. 3.5MHz; for other clock frequencies this time is proportionately shorter or
longer.

1

This autobaud method has both its advantages and drawbacks. On one hand, it does not tie down any pin
and does not require any extra hardware nor manipulation with shorting jumpers or switches, as the old
entry method did. On the other hand, in applications where an external device sends continuous stream
of data to the P89V51RD2's UART, upon reset, the bootlader may be entered inadvertently. The extra
delay before the application itself starts, may be a hindrance in certain applications, too. Where a
different entry method is required, bootloader version 7 offers alternatives - see below.

The autobauding process itself is not quite perfect either. It derives the UART's baudrate coefficient by
measuring the time between a trailing and a leading edge on the RxD pin (i.e. duration of a "0" bit). It
then starts the UART and waits for the "U" character. As the "measurement" involves a certain granularity
(uncertainty in the edges detection by bootloader firmware), moreover on RS232/UARTs usually some
small asymmetry between duration of 0s and 1s exists, there is a chance of errorneous detection of
baudrate, even if a crystal normally allowing precise setting of a given baudrate is used11. The probability
of correct baudrate detection generally increases with lower baudrates, so the conservative
recommendation is to use 9600 Bauds or below, even if this may lead to increased programming times.

To start the autobauding, usually the P89V51RD2-containing device is simply powered up; however, in
some cases a simple circuit triggering reset from some of the handshake lines (RTS, DTR) is built to the
device, for added comfort. This then has to be handled by the PC-side software accordingly. (Note, that
FlashMagic by default assumes such hardware to be present, which may cause unexpected behaviour of
FM if this hardware is absent).

The ISP protocol is entirely ASCII based, and uses intelhex-like "records" to perform various operations
(except for the response during FLASH readout, which can perhaps be described as "raw ascii
hexadecimal with spaces"). This allows to use as a PC-side programming utility any general-purpose
terminal emulator, such as the ubiquitous Hyperterminal, or Tera Term12 on Windows, or minicom13 on
Linux/Unix-like OS. Autobauding can be performed "by hand", pressing and holding down the "U" key and
relying on the keyboards autorepeat, while resetting the target device. Commands for device
identification (which serves as the successful autobauding verification) and erasing can be either "typed
in", or "uploaded" from a previously prepared file, if needed. The FLASH content itself, as it is
programmed using the "normal" type 00 intelhex fields, found in the .hex files output from compilers and
assemblers, can be simply "uploaded" from these files; to allow time for programming, an inter-line delay
of some 100ms has to be set.

Even if possible, the above described "manual" method is rather tedious and may serve only as a backup
emergency method of programming. The standard PC-side application for programming is FlashMagic (by
ESAcademy)14. There is also a FlashMagic forum15, with an extensive bootloading troubleshooting list16.

Characteristics of FLASH in P89C51RD2
The code FLASH in P89C51RD2 consists of two big blocks:

- Block0, 64kB, mapped at 0000h-0FFFFh, intended to run the "normal" user application.

- Block1, 8kB, mapped at 0000h-1FFFh, containing the bootloader.

As the two blocks overlap in the 0000h-1FFFh area, which of them is "visible" is determined by two bits
in the FCF special function register. Both bits and their meaning is in detail described in chapter 7.1.1 and
Table 5 of the datasheet.

The FLASH can be written byte-by-byte. As is usual with FLASH, bytes have to be erased prior to be
written. An erased byte contains 0FFh. FLASH can be erased by 128-byte sectors (pages), or by a whole
block (using an external parallel device programmer, a third method, full chip erase, is also possible -
this erases both blocks, the x2 flag and the security flag in one operation). During writing/erasing,
execution is not possible, so the code writing to Block0 must reside in Block1 (i.e. the bootloader code
has to be called to perform the write/erase in Block0).

The datasheet states endurance as 10.000 cycles and retention to 100 years, which together with the
relatively small sector size makes the FLASH suitable for ocassionally rewritten data storage (EEPROM
replacement e.g. for device setup parameters). The datasheet completely fails to specify erase and write
times... Note, that the datasheet specifies a minimum clock frequency, 0.25MHz, for in-application
programming. The datasheet does not specify supply current during programming, but a safety margin of
a few tens of mA over the specified "normal" supply current, and decent supply decoupling, could never
hurt.

According to the datasheet, there is a single (non-volatile) security bit, preventing reading of the FLASH
using parallel programmer. This bit can be set both by parallel programmer and during ISP or IAP. This

2

bit does not influence device readout through ISP (which has an independent security mechanism, based
on a "serial number", see below), nor IAP.

Default bootloader
In FLASH Block1, there is a factory-programmed bootloader, enabling both ISP and IAP. From factory,
Block1 also contains a core-mode monitor/debugger called SoftICE, but unfortunately NXP does not
publish any more information on this piece of code except for its existence.

Note, that the bootloader will be erased when using chip erase in a parallel device programmer. The
datasheet warns for this in Chapter 6.3.2. It is a good idea to read out and store the bootloader before
performing chip erase, although an image of the bootloader can be downloaded from NXP (don't use the
"upgrade" file for this purpose). Consult your device programmer's manual on detailed instructions.

The bootloader is around in various versions. Please note, that the versions below apply specifically for
the P89V51RD2 - bootloaders for P89V51RB2 and P89V51RC2 are for some unknown reason numbered
differently.

Version 4 was factory-programmed in older devices, but contained several errors, including a flaw
preventing sector erase using ISP, and a relatively fatal error causing devices to be stuck permanently in
the SoftICE mode, if inadvertently selected.

Version 5 was provided as a fix to these problems, and can be downloaded from NXP's site in both forms:
as the binary (intelhex) image, and as an "upgrader"17. The image is intended to be programmed to
Block1 using a device programmer. The "upgrader" contains both the image and a short utility, and is
intended to be programmed using ISP to Block0, so when run afterwards, it rewrites Block1 itself.
FlashMagic can be used to take care of the whole upgrading procedure. As a curiosity, neither the image
nor the upgrade contains the softICE part of firmware.

Newer devices are factory-programmed with bootloader version 6; however, exact differences between
version 5 and 6 are not known.

Version 7 is provided only as an "upgrader" from the FlashMagic website18, and provides several
alternative options for the bootloader entry method, including pin-level-dependent entry and
permanently disabled bootloader.

Security of the user code in FLASH against unauthorised reading through ISP is accomplished through an
elaborate mechanism, involving programming a "serial number" which serves as a pass-code. Once
"serial number" of nonzero length is programmed, after each reset the ISP commands (except version
information and block erase) can be used only if the "serial number" is entered. Block0 erase clears also
the serial number. This mechanism does not influcence reading by a parallel programmer, nor IAP.

IAP
In-application programming (IAP) of Block0 FLASH in P89V51RD2 is performed through setting up a
couple of registers, and making a call to a predetermined address - 1FF0h - in Block1. This, and a list of
possible operations together with the related registers (Table 13, which we are not going to reproduce
here, and the reader is requested to study it thoroughly), is roughly all the datasheet says about IAP. The
reality is somewhat more complex.

As said above, the code performing programming of FLASH Block0 has to run from Block1. This is why
the IAP routines are part of the default bootloader in Block1. So, to be able to run these routines, Block1
must be mapped as active at the lower part of code address space, 0000h-1FFFh. This is accomplished
through clearing both SWR and BSEL bits in FCF special function register. Note, that this step has two
consequences:

- the code "switching" the blocks (i.e. clearing both mentioned SFR bits) must lie above the "shared"
area, i.e. within 2000h-FFFFh. It is handy therefore to create a short routine, which handles the FLASH
block switching and the IAP entry point (1FF0h) call - see CallIAP routine in the example below - and
locate it at some suitable high address. As it is with absolutely located routines, it must be made sure,
that it is not overlapped with some other routine. In most applications, a location near the top of the
available FLASH might be a suitable place.

- before the blocks switching, interrupts must be disabled. After blocks switching, the interrupt vector
area at the beginning of code address space is occupied by Block1, with the default bootloader. As the
default bootloader has no provisions for interrupt handling, any interrupt which would occur while
Block1 is "visible", would execute some random code, leading to crash.

3

After return from the IAP routines, Block0 can be restored by setting BSEL bit (SWR bit is supposed to be
set only by hardware), after which interrupts may be reenabled.

Using IAP, any byte in Block0 can be programmed, including the 0000h-1FFFh area. Care has to be
practiced, of course, if areas with "living" code are programmed or erased, including the interrupt vector
area. However, only bytes which contain 0xFF (i.e. which are erased) may be programmed. This means,
that if a non-0xFF byte has to be reprogrammed, the 128-byte sector where this byte is located has to be
erased. If other bytes in this sector have to be preserved, they must be stored into RAM (ERAM) before
erasing and then reprogrammed back to that sector.

The IAP "protocol" contains confusing commands, too. There is a command for block 0 erase, which is a
complete nonsense, as the routine calling IAP would be erased, too, and there would be no code to return
to (an effective "suicide" of the application"). There is also a command for byte read, which is much
easier to perform using some of the MOVC instructions.

Note also, that the datasheet does not specify resources used by the IAP routines. Even if these can be
determined by disassembling the bootloader, there is no guarantee these will not change in some future
versions. Some of the potentially problematic issues include:

- stack usage - the IAP routines perform at least two nested calls, so a conservative approach would be
to reserve around 10 bytes of stack for the IAP

- register usage - a conservative approach would assume that all registers R0-R7 of the current bank, B
and DPTR are changed bye IAP routines

- memory and SFR usage - it is unlikely that the IAP calls would use any memory and/or SFR (except
the FLASH interface SFRs, which are undocumented anyway)

- sensitivity to register bank setting, and possible change to it - if the bootloader code would use
absolute addressed registers, it would be sensitive to the particular register bank at the moment of
IAP call. A conservative approach would be to stick to register bank 0 when calling IAP routines.
However, it is unlikely that the IAP routines would actively change the bank.

- sensitivity to DPTR selection, and possible change to it - it is unlikely that the IAP routines would be
sensitive to which DPTR is currently selected. It is also unlikely they would change the DPTR selection
or modify the other than currently selected DPTR.

Timing of the IAP routines is also not specified. Read commands are certainly served within several tens
of instruction cycles, but programming commands take certainly more time. A conservative estimate
would be, that programming a single byte takes a couple of milliseconds, whereas a sector erase might
take tens of milliseconds, and a block erase up to several seconds.

Timing of IAP routines, i.e. the time while the mcu is essentially out of the user's control, has to be taken
into account not only for timer-based operations (including the PCA), but also for UART operation and SPI
slave operations. Handshaking with the other-side device has to be employed wherever applicable.

Another timing-sensitive issue is the watchdog, which has to be served just before and after the IAP call,
or, if this is insufficient, disabled during IAP (although disabling watchdog is generally a bad idea).

IAP and C
Unfortunately, most of the issues related to IAP call for solutions which are outside the scope of standard
C, therefore relies on implementation-dependent details of the given toolchain, and entirely non-portable.

As there are many low-level issues involved in calling the IAP routines - allocating variables into
particular registers, positioning the calling routine at an absolute address above 2000h - the lowest-level
routine is best to be handled in assembler - most probably as a separate source file. It could contain a
single routine, taking three parameters, which the routine would pick from the registers/addresses given
by calling conventions of the given compiler, and move them into R1/DPTR/ACC. It would then

To place this routine to an absolute address above 2000h, a compiler/toolchain-dependent method must
be used. Some toolchains allow to use ORG or similar directive in assembler routines. Other toolchains
can handle absolute allocation during linking, either using a command-line switch, or through linker
scripts. Consult the documentation of your toolchain for details, or try to find an example of similar
character.

In C, calling a routine located at an absolute address is usually accomplished through a function pointer
initialised to the given address; or a literal (a constant number) cast to a function pointer.

An example of P89V51RD2 IAP usage in SDCC can be found in the CMON51 project19.

4

IAP example
The following assembly language example tries to show the usage of IAP in P89V51RD2 (although
intended for the Metalink assembler20, it could be easily modified for any standard '51 assembler
following the Intel syntax):

$MOD52
FCF EQU 0B1h
 ORG 0
 ljmp Reset
;---- interrupt vectors
;none here
;---- "main"
Reset:
;if we try to rewrite an already programmed byte without previously erasing it, this will fail:
 MOV DPTR, #TestArea1
 MOV A, #55h
 CALL FLASH_PROGRAM_BYTE
;this is how a sector has to be erased prior bytes in it are being rewritten:
 MOV DPTR, #TestArea2
 CALL FLASH_ERASE_SECTOR
 MOV DPTR, #TestArea2
 MOV A, #0AAh
 CALL FLASH_PROGRAM_BYTE
Stop: SJMP Stop
;---- data area, 128-byte sectors
;make sure that there is no code in the whole sector,
;as upon updating the data the whole sector gets erased
 ORG 0080h
TestArea1:
 db 0, 0
 ORG 0100h
TestArea2:
 db 0, 0
;end of TestArea2 at 017F
 ORG 0180h
;rest of code may go here
;---- FLASH API - must be located anywhere ABOVE 2000h
 ORG 03F00h
;programs a single byte in FLASH
;DPTR=addres, A=content of byte to be programmed
;the position to be programmed must be previously erased
FLASH_PROGRAM_BYTE:
 PUSH IE ;DISABLE INTERRUPTS
 CLR EA
 MOV R1,#02 ;SETUP OPERATION CODE -- write byte
 ANL FCF,#0FCh ;enable boot sector - !!! this command MUST be located ABOVE 2000h!!!
 CALL 01FF0H ;call to ISP_API (modifies B register but no Rx)
 ORL FCF,#001h ;switch back to user FLASH
 POP IE
 RET
;erases a 128-byte sector in FLASH
;DPTR=address of first byte of sector to be erased
FLASH_ERASE_SECTOR:
 PUSH IE ;DISABLE INTERRUPTS
 CLR EA
 MOV R1,#08 ;SETUP OPERATION CODE -- erase sector
 ANL FCF,#0FCh ;enable boot sector - !!! this command MUST be located ABOVE 2000h!!!
 CALL 01FF0H ;call to ISP_API (modifies B register but no Rx)
 ORL FCF,#001h ;switch back to user FLASH
 POP IE
 RET
;----- that's all, folks
 END

5

This example tries to illustrate several facts:

- the IAP API calling routines are located above 2000h

- these routines explicitly disable interrupts (even if in this "application" the interrupts are not used at all)

- the data area must be erased before rewriting

After assembling, program the resulting hex-file into a P89V51RD2 using FlashMagic. Perform also a
verification - it should verify OK. If you read out the data, the two data areas should read as:

0080: 00 00 FF FF FF ...
and

0100: 00 00 FF FF FF ...

Now reset the P89V51RD2, so that the application may run - it needs less than a second. Now enter
again bootloader mode with FlashMagic (e.g. by reading the signature bytes), and perform a verify: it will
fail. Reading the data should show, that the first sector - which was not erased in the "application" -
remained unchanged, and the second got erased and its first byte rewritten:

0080: 00 00 FF FF FF ...
0100: AA FF FF FF FF ...

28.12.2009, v1

6

References:

[1] http://www.nxp.com/pip/P89V51RD2.html
[2] http://www.nxp.com/pip/P89C51RD+.html
[3] http://www.nxp.com/pip/P89C51RD2.html
[4] http://www.nxp.com/pip/P89C668.html
[5] http://www.atmel.com/dyn/products/Product_card.asp?part_id=3044
[6] http://www.nuvoton.com/hq/enu/ProductAndSales/ProductLines/ConsumerElectronicsIC/Microcontrol

ler/80C51Microcontroller12T/W78ERD2A.htm
[7] http://www.sst.com/products/?inode=41314
[8] http://www.nxp.com/pip/P89CV51RB2.html
[9] http://www.nxp.com/pip/P89LV51RB2.html
[10]http://www.standardics.nxp.com/products/80c51/datasheet/p89v51rb2.p89v51rc2.p89v51rd2.pdf
[11]http://www.efton.sk/t0t1/autobaud_error.htm
[12]http://ttssh2.sourceforge.jp/
[13]http://alioth.debian.org/projects/minicom/
[14]http://www.flashmagictool.com/
[15]http://forum.flashmagictool.com/
[16]http://forum.flashmagictool.com/index.php?topic=3232.0 and link given therein
[17]http://www.standardics.nxp.com/support/documents/microcontrollers/zip/boot.loader.p89(l)

v51rd2.zip
[18]http://www.flashmagictool.com/assets/resources/P89V51Rx2_Bootloader_Update.zip
[19]http://cmon51.sourceforge.net/
[20]http://www.metaice.com/ASM51/ASM51.htm

7

